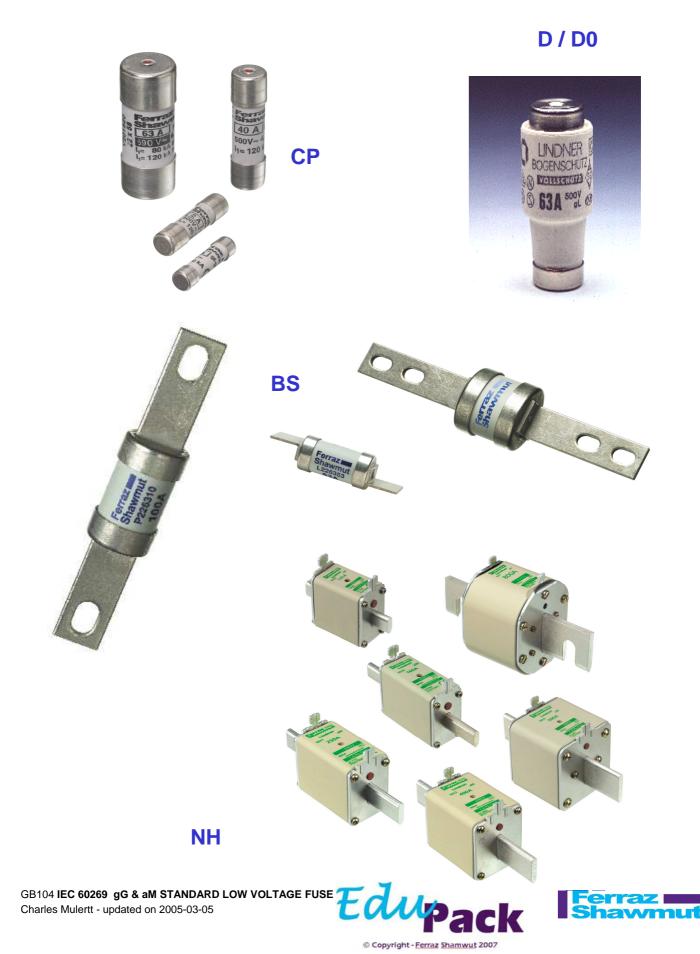
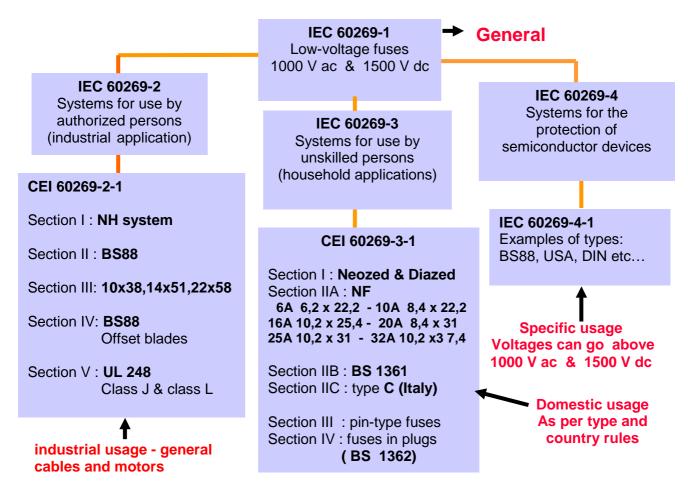
Edupack


IEC 60269 gG & aM STANDARD LOW VOLTAGE FUSE

- 1. INTRODUCTION
- 2. INTRODUCTION TO THE IEC 60269 STANDARD
- 3. COMPARISON OF THE TIME CURRENT CURVES OF DIFFERENT FUSE TYPES
 - 3.1. Comparison of IEC and UL fuses
 - 3.2. Comparison of the time current curve of 4 IEC fuse types
- 4. A gG FUSE MADE IN ANY TECHNOLOGY CAN BE REPLACED BY A gG FUSE IN ANOTHER TECHNOLOGY (id. for aM fuses)
 - 4.1. gG time current curves as per IEC definition
 - 4.2. aM time current curves as per IEC definition
- 5. PROTECTION LEVEL / PROTECTION COORDINATION : IEC 60947 § 8.2.5.1.
- 6. SELECTION OF THE FUSE VOLTAGE RATING U_{N}
- 7. gG AND aM FUSE SELECTION: influence of the environment
 - 7.1. Ambient temperature and air cooling
 - 7.2. Altitude
- 8. gG FUSE SELECTION: SELECTIVITY BETWEEN FUSES
- 9. GENERAL RECOMMENDATION FOR CABLES OVERLOAD PROTECTION
- **10. GENERAL RECOMMENDATION FOR TRANSFORMER PROTECTION**
- **11. GENERAL RECOMMENDATION FOR MOTOR PROTECTION**
- 12. GENERAL RECOMMENDATION FOR CAPACITOR PROTECTION



1. INTRODUCTION

Fuses gG and aM as per IEC 60269 are proposed in many different technologies formerly defined by local standards such as British Standards, French standards, German Standards etc. However when they are marked gG or aM their electrical characteristics comply with IEC 60269 electrical requirements i.e. the melt curves must go between the same gates, testing conditions are the same, power losses must be less than a maximum value etc.

2. INTRODUCTION TO THE IEC 60269 STANDARD

IEC 60269 APPLICATION CATEGORIES: aM, aR, gR, gG, gTr etc.

The first letter indicates the main operating mode:

a = associated fuse. It must be associated to another protective device as it cannot interrupt faults below a specified level. Short circuit protection only.

g = general purpose fuse. It will interrupt all faults between the lowest fusing current (even if it takes 1 hour to melt capacity. Overload and short circuit protection the fuse elements) and the breaking

The second letter indicates the object to be protected :

- **G** = cable and conductor protection , general
- **M** = motor circuit protection
- **R** = semi conductor protection
- **S** = semi conductor protection
- Tr = transformer protection
- **N** = North American conductor protection
- **D** = North American "Time Delay" (for Motor circuit protection)

Copyright - Ferraz Shamwut 2007

TABLE 1

FUSE TYPE	TYPICAL INDUSTRIAL APPLICATIONS	OPERATING RANGE
gG	General purpose fuse essentially for conductor protection	Full range
gM	Motor protection	Full range
аМ	Motor circuits protection against short circuit only	Partial range
gN	North American fast acting fuse for general purpose applications, mainly for conductor protection (for example fuse class J and class L)	Full range
gD	North American general purpose time-delay fuse for motor circuit protection and conductor protection (for example: fuse class AJT, RK5 and A4BQ)	Full range
aR	IEC 269 fuse for semi conductor protection	Partial range
gTr	Transformer protection	Full range
gR, gS	Fuse for semi conductor protection and conductor protection	Full range
gL, gF, gl	Former type of fuses for conductor protection replaced today by the gG fuses	Full range

IEC does not supply certificates showing the fuse compliance with the requirements of the IEC 60269 standard.

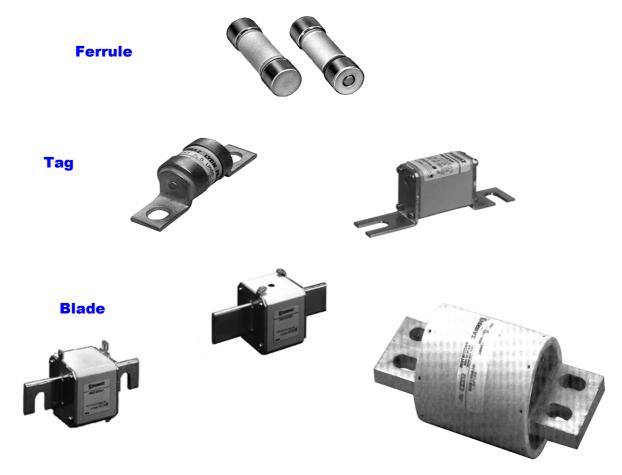


Figure 1: examples of different types of terminals

© Copyright - Ferraz Shamwut 2007

3. COMPARISON OF THE TIME CURRENT CURVES OF DIFFERENT FUSE TYPES

3.1. Comparison of IEC and UL fuses

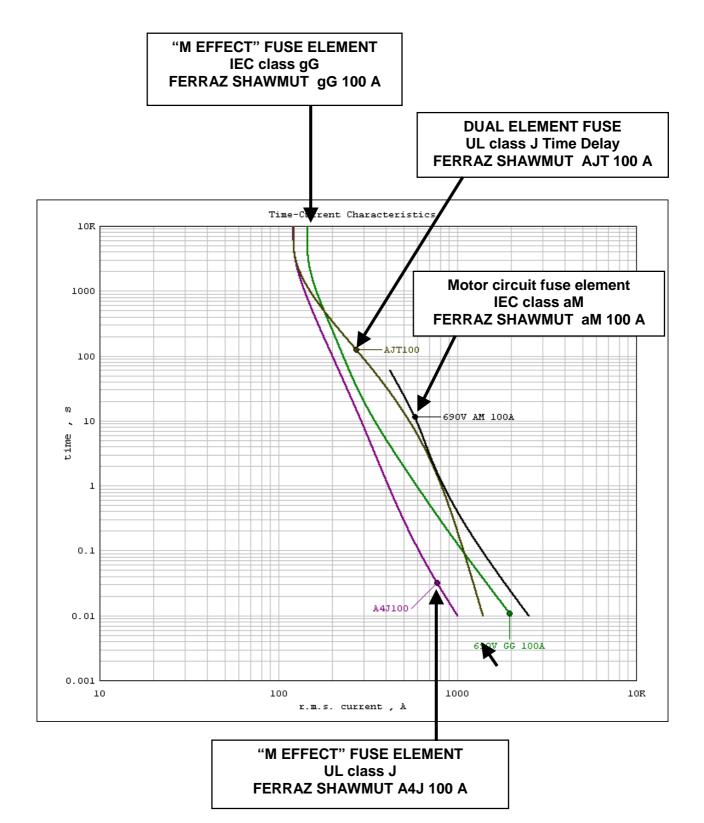
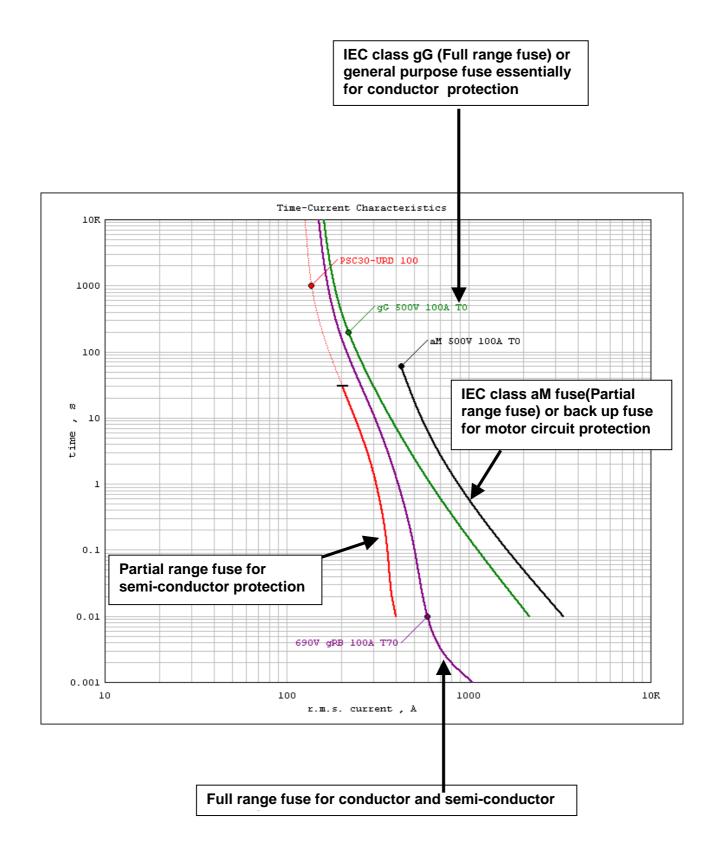



Figure 2 : comparison of IEC and UL fuses

3.2. Comparison of the time current curve of 4 IEC fuse types

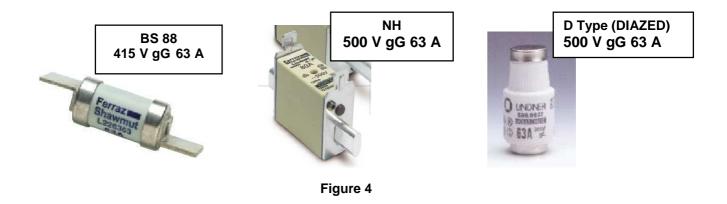


Figure 3 : comparison of the time current curve of 4 different IEC fuses

4. A gG FUSE MADE IN ANY TECHNOLOGY CAN BE REPLACED BY ANOTHER gG FUSE FROM ANY OTHER TECHNOLOGY (id. for aM fuses)

In the above example the NH fuse and the DIAZED fuse can replace the BS 88 fuse . But the BS 88 fuse cannot replace the 2 others because of the voltage rating, unless the circuit to protect is fed by a 400 V or less power supply.

The replacement of the Diazed fuse by the NH fuse or the BS88 is possible because they have the same curves and same max $l^{2}t$, same temperature rise etc. as they are specified by the IEC 60269.

However it is **absolutely necessary to check the voltage and the breaking capacity of the new fuse** are not lower than the values of the other fuses or at least fit with the circuit requirement.

4.1. gG time current curves as per IEC definition: examples

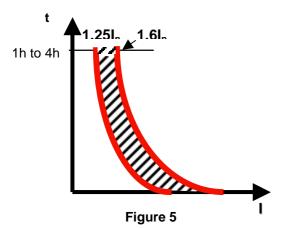
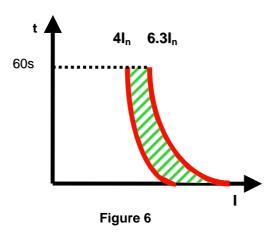



TABLE 2

Fuse rating (A)	lmini at 10s (A)	lmax at 5s (A)	lmini at 0,1s (A)	lmax at 0,1s (A)
25	52	110	150	260
80	215	425	610	1100
250	750	1650	2590	4500
800	3060	7000	10600	19000
1250	5000	13000	19000	35000

4.2. aM time current curves as per IEC definition

TABLE 3

current	tmini (S)	tmax (S)
4 In	60	
6,3 In		60
8 In	0,5	
10 In	0,2	
12,5 In		0,5
19 In		0,1

GB104 IEC 60269 gG & aM STANDARD LOW VOLTAGE FUSE Charles Mulertt - updated on 2005-03-05

5. PROTECTION LEVEL / PROTECTION COORDINATION IEC 60947 § 8.2.5.1.

IEC 60947-4 - 1 belongs to: contactors and motor-starters electromechanical contactors et motor-starters

§ 8.2.5.1. : Performance under short circuits conditions

In this paragraph coordination types are defined as follows:

type 1 coordination:

requires that, under short circuit conditions, the contactor or starter shall cause no danger to persons or installations and may not be suitable for further service without repair and replacement of parts.

type 2 coordination:

requires that, under short circuit conditions, the contactor or starter shall cause no danger to persons or installations and shall be suitable for further use. The risk of contact welding is recognized, in which case the manufacturer shall indicate the measures to be taken as regards the maintenance of the equipment.

6. SELECTION OF THE FUSE VOLTAGE RATING U_{N}

Voltage is the most critical parameter. Any fuse selection must start by the choice of the voltage rating U_N of the fuse. The maximum voltage of the circuit $V_{CIRCUIT MAX}$ (this is the rated voltage + variation) must be lower than the maximal operational voltage of the fuse $U_{FUSE MAX}$ given in the table.

U_{FUSE MAX} > V_{CIRCUIT MAX}

Example 1: a circuit is rated 400 V \pm 15% then Vcircuit max = 460 V Consequently the fuse rated 500 V must be used.

Example 2: a circuit is rated 400 V \pm 10% then Vcircuit max = 440 V Consequently the fuse rated 400 V can be used.

FUSE TYPE	Rated voltage U _N (V)	Maximum operational voltage of the fuse U _{FUSE MAX} (V)		
	230	253		
gG, gM, aR, aM	400	440		
	500	550		
	690	725		
gN, gD (American ranges)	600	* 600		

TABLE 4

GB104 IEC 60269 gG & aM STANDARD LOW VOLTAGE FUSE Edupated on 2005-03-05

Copyright - Ferraz Shamwut 2007

7. gG AND aM FUSE SELECTION: influence of the environment

7.1. Ambient temperature and air cooling

When the temperature θ_a is higher than 40°C and when there is an air cooling with air velocity V on the fuse, the fuse current rating I_N is obtained from the operating current I_B as follows:

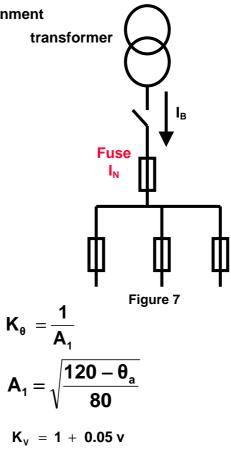

$$I_{N} = I_{B} \frac{K_{\theta}}{K_{V}}$$

TABLE 5

θ	Kθ
40	1
45	1.03
50	1.07
55	1.11
60	1.16
65	1.21
70	1.27

TABLE 6

Κv
1
1.05
1.10
1.15
1.20
1.25
1.25

with \boldsymbol{v} between 0 m/s and 5 m / s

7.2. Altitude

IEC defines normal atmospheric operating conditions. Regarding the altitude it is generally written that fuse characteristics are not modified up to 2000m.

For altitudes above 2000 m the current rating I_N alone of the fuse is changed. The currant rating of the fuse is derated by 0,5 % every 100 m above 2000 m.

The operating current **I** of the fuse at an altitude h higher than 2000 m is given by:

$$I = I_{N} * \left(1 - \frac{(h - 2000)}{100} * \frac{0.5}{100} \right)$$

For example a fuse rated 400 A working at 2500 m can carry:

$$I = 400 * \left(1 - \frac{(2500 - 2000)}{100} * \frac{0,5}{100} \right) = 400 * (1 - 5 * 0,005) = 400 * 0,975 = 390 \text{ A}$$

Conversely the current rating of the fuse carrying a current $\mathsf{I}_\mathsf{B}\,$ is given by:

$$\mathbf{I}_{N} \ge \mathbf{I}_{B} * \mathbf{K}_{altitude}$$
 with $\mathbf{K}_{altitude} = \frac{1}{\left(1 - \frac{(h - 2000)}{100} * \frac{0,5}{100}\right)}$

• NOTE : obviously other parameters must always be considered (§7.1.), consequently:

$$I_{N} \geq I_{B} K_{altitude} \frac{K_{\theta}}{K_{V}}$$

GB104 IEC 60269 gG & aM STANDARD LOW VOLTAGE FUSE Charles Mulertt - updated on 2005-03-05

© Copyright - Ferraz Shamwut 2007

8. gG FUSE SELECTION: SELECTIVITY BETWEEN FUSES

When fuse F1 operates , fuses F2 and F3 must not operate and moreover their characteristics should not be altered.

Selectivity: selectivity between gG fuse is achieved when the ratio between 2 ratings is about 1.60

Example:

F1 = 200 A

F2 = 315 A does not melt when F1 melts because 315 / 200 = 1.575

F3 = 550 A does not melt when F2 melts because 550 / 315 = 1.746

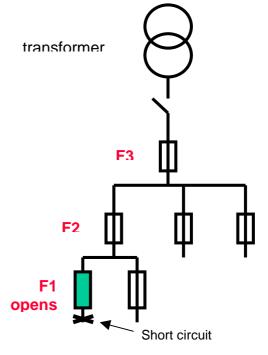


Figure 8

9. GENERAL RECOMMENDATION FOR CABLES OVERLOAD PROTECTION

The protection of the cable is checked with the following parameters:

- I_B : operating current of the cable
- I_Z : maximum current carrying capacity of the cable
- I_N : rated current of the fuse
- $I_{\mathsf{F}}~$: conventional fusing current of the fuse

The cable is protected when the 2 following conditions are fulfilled:

 $I_B \leq I_N \leq I_Z$ $I_F \leq 1.45 I_Z$

Values of I_z are given in table 7

The choice of the fuse is made after :

- calculation of the acceptable current in the conductors
- determination of the number of conductors according to the installation method
- (1) PEN wires: wire achieving neutral wire and protection wire at the same time
- (2) When the current is shared as evenly as possible between the phases the cross section of neutral conductors can be smaller than the phases conductors cross section. When this sharing is not good the neutral conductor and phases conductors have the same cross section.

The fuses have to be fitted at the starting point of the circuit to be protected

For 30℃ ambient the minimal cross section of phase and neutral conductors is indicated in the table 8.

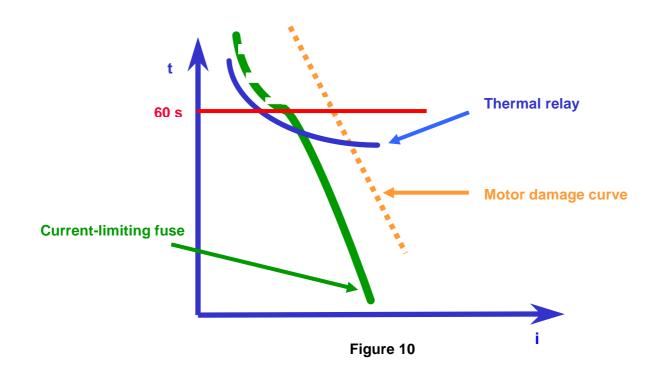
GB104 IEC 60269 gG & aM STANDARD LOW VOLTAGE FUSE Charles Mulertt - updated on 2005-03-05

Rated current	Cross section of copper cables or bar	Conventional time	lz
(A)	(mm²)	(h)	(A)
12	1	1	15
16	1.5	1	19.5
20 & 25	2.5	1	26
32	4	1	35
40	6	1	46
50 & 63	10	1	63
80	16	2	85
100	25	2	112
125	35	2	138
160	50	2	168
200	70	3	213
250	120	3	299
315	185	3	392
400	240	3	461
400 < I _N	BAR	4	BAR

TABLE 7

TABLE 8

	Maximum operating current and		num cross se of copper wire (mm²)		Maximum operating current and		mum cross se aluminium w (mm²)	
	ratings of gG fuses	phase	neutral	PEN (1)	ratings of gG fuses	phase	neutral	PEN (1)
	12	1,5	1,5	1,5				
	16	2,5	2,5	2,5				
	20	4	4	4				
	32	6	6	6	32	10	10	10
	40	10	1Q	10	40	16	bt (16
	63	16	16	16	63	25	25	25
					63	35	35	35
	80	25	25	25	80	50	35	35
	100	35	25 (2)	25	100	70	35 (2)	35
	125	50	25 (2)	25	125	95	50 (2)	50
	160	70	35 (2)	35	160	120	70 (2)	70
	160	95	50 (2)	50	160	150	70 (2)	70
	200	120	70 (2)	70	200	185	70 (2)	70
	250	150	70 (2)	70	250	240	95 (2)	95
	250	185	70 (2)	70				<u> </u>
	315	240	95 (2)	95	315	2x120	120 (2)	120
					315	2x120	150 (2)	150
	400	2x120	120 (2)	120	400	2x185	150 (2)	150
	500	2x150	150 (2)	150	500	3x120	185 (2)	185
	500	2x185	150 (2)	150	500	3x150	185 (2)	185
	630	3x120	185 (2)	185	630	3x185	240 (2)	240
	630	3x150	185 (2)	185				
	800	3x185	240 (2)	240	800	3x240	240 (2)	240
GB104 IEC Charles Mu	800 3x185 240 (2) 240 800 3x240 240 (2) 240 GB104 IEC 60269 gG & aM STANDARD LOW VOLTAGE FUSE Charles Mulertt - updated on 2005-03-05 Elipson (2005) Elipson (2005) Elipson (2005) Elipson (2005) Elipson (2005) © copyright - Ferraz Sharwut 2007 Elipson (2005) <t< td=""></t<>							


10. GENERAL RECOMMENDATIONS FOR LOW VOLTAGE TRANSFORMER PROTECTION

- Primary and secondary fuse combinations are often used: in this case the primary fuse can be "a " style • fuse but the secondary fuse must be a "g " style fuse
- With American Time Delay fuses, fusing the primary only is possible (see " UL 248 LV fuses USA ")

The inrush peak current at 10 ms can reach 40 times the rated current **INTRANS** of the transformer, the RMS value is then 16 times INTRANS

11. GENERAL RECOMMENDATION FOR MOTOR CIRCUIT PROTECTION

The aM fuse must be associated to other protective devices because it must not operate for times above 60 seconds

12. GENERAL RECOMMENDATIONS FOR CAPACITOR PROTECTION

The fuse selection must take into account:

- the inrush current occurring when the capacitor is switched on
- the harmonic currents during the normal operation of the network
- the recovery voltage across the fuse terminals after a fault interruption. -

